Estimation of crop yield distribution and Insurance Premium using Shrinkage Estimator: A Hierarchical Bayes and Small Area Estimation Approach

نویسندگان

  • Sebastain N. Awondo
  • Gauri S. Datta
  • Octavio A. Ramirez
  • Greg Fonsah
چکیده

Selected Paper prepared for presentation at the Agricultural & Applied Economics Association’s Annual Meeting,Seattle, Washington, August 12-14, 2012. Copyright 2012 by Sebastain N. Awondo,Gauri S. Datta,Octavio A. Ramirez, and Esendugue G. Fonsah. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies. Obtaining reliable estimates of insurance premiums is a critical step in risk sharing and risk transfer necessary to ensure solvency and continuity in crop insurance programs. Challenges encountered in the estimation include dealing with aggregation bias from using county level yield averages as well as properly accounting for spatial and temporal heterogeneity. In this study, we associate some of these challenges as classical small area estimation (SAE) problems. We employ a hierarchical Bayes (HB) SAE to obtain design consistent expected county level yields and Group Risk Plan (GRP) premiums for corm farms in Illinois using quasi-simulated data. Preliminary results show little bias (< 10%) in estimated expected county yields in several counties investigated. We found wide variation in GRP, APH and basis risk across counties for similar level of coverage and scale. Results show that farmers could lower their GRP premiums by as much as 30% by carefully choosing a coverage level and scale combination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classic and Bayes Shrinkage Estimation in Rayleigh Distribution Using a Point Guess Based on Censored Data

Introduction      In classical methods of statistics, the parameter of interest is estimated based on a random sample using natural estimators such as maximum likelihood or unbiased estimators (sample information). In practice,  the researcher has a prior information about the parameter in the form of a point guess value. Information in the guess value is called as nonsample information. Thomp...

متن کامل

Small Area Estimation of the Mean of Household\'s Income in Selected Provinces of Iran with Hierarchical Bayes Approach

Extended Abstract. Small area estimation has received a lot of attention in recent years due to necessity demand for reliable small area statistics. Direct estimator may not provide adequate precision, because sample size in small areas is seldom large enough. Hence, by employing models that can use auxiliary information and area effects in descriptions, one can increase the precision of direct...

متن کامل

Bayes, E-Bayes and Robust Bayes Premium Estimation and Prediction under the Squared Log Error Loss Function

In risk analysis based on Bayesian framework, premium calculation requires&nbsp;specification of a prior distribution for the risk parameter in the heterogeneous portfolio. When the prior knowledge is vague, the E-Bayesian and robust Bayesian analysis&nbsp;can be used to handle the uncertainty in specifying the prior distribution by considering a class of priors instead of a single prior. In th...

متن کامل

Developing Area Yield Crop Insurance under Alternative Parametric Methods: Case study for Wheat in East Azarbaijan Province, Iran

In crop insurance design, the yield guarantee and the premium are very important parameters, both of which depend upon the yield distribution. Accordingly, the accurate modeling of yield distribution is essential for designing crop insurance contracts. This study employs historical county-level yield data for irrigated and dry wheat in East Azarbaijan Province, Iran for 1975-2013 to evaluate th...

متن کامل

Some New Developments in Small Area Estimation

Small area estimation has received a lot of attention in recent years due to growing demand for reliable small area statistics. Traditional area-specific estimators may not provide adequate precision because sample sizes in small areas are seldom large enough. This makes it necessary to employ indirect estimators based on linking models. Basic area level and unit level models have been extensiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012